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COMPUTATION OF THE
PRESSURE-TIME HISTORY OF A SONIC BOOM
SHOCK WAVE ACTING ON A WINDOW GLASS IN A BUILDING

By Glen W. Zumwalt
SUMMARY

Mathematical methods are presented for computing the pressure-time history
of a sonic boom shock wave acting on any given exterior wall surface facing the
shock wave. Also, for walls which are in the "shadow" of the shock wave or which
receive reflected wave effects from nearby walls or corners, additional methods
are presented. These methods are applied to a specific window location of a
building wall at which it is believed the window glass was broken by a specific
sonic boom from one test flight during the series of 1,253 sonic boom test
flights at Oklahoma City in 1964.

The calculated pressure-time history acting on this window glass location,
from this particular sonic boom, indicates that no abnormal or unusual pressure-
time condition would have been produced. However, these calculations are based
on several assumed atmospheric conditions and flight data values of which some
are of doubtful validity.

INTRODUCTION

During the series of sonic boom test flights conducted in the Oklahoma City |
area during 1964, an 8' x 10' x 1/4" plate glass window in the store front of a ‘
single-story commercial building was broken coincidentally with the occurrence of
one of the sonic booms. See Figure 1.

This particular sonic boom occurred at about 1:20 p.m. on Sunday, May 17,
1964 and was produced by an F-101 aircraft at 40,000 feet altitude on a scheduled
steady~-state course at a scheduled speed of Mach 1.4. Orientation and distance
of aircraft course with respect to the building are shown in Figure 11.

Using this specific incident as an example, an attempt has been made to
develop methods for predicting, or estimating, the pressure-time history acting
on building walls in general when exposed to sonic boom shock waves. The
pressure—time history is considered to include both bow and tail incident waves
plus their respective reflected waves.

First considered is the time—of-passage of an incident wave and the time

interval between incident and reflected waves for a wall facing the wave. This
includes the following variables: aircraft velocity, altitude, and direction;

wall angle, slope, and offset distance from the flight track. No wind effect is




included, but three atmospheric temperature models are used in the analysis.

The second analysis is concerned with N-wave diffraction and reflection
around structures. The two-dimensional theory of Keller and Blank (Ref. 2)
is adapted to produce a series of pressure perturbation expressions for multiple
wave reflections.

The two analyses are applied to the location of the broken window in the
example store front. Since the window location is under an overhanging roof of
sufficient size to place it in the 'shadow'" of the shock wave, it provides almost
all of the complications which can occur. Pressure-time histories are computed
for the four corner points and the mid-point position of the window location.
Since a two-dimensional analysis is used for the diffraction process, some
idealization of the model was necessary.

A discussion is presented of a three-dimensional mesh-point computation
technique which would permit treatment of three-dimensional, non-steady waves
with arbitrary wall placement.

Purpose of this paper is intended to provide additional background infor-
mation for further development of effective methods for predicting, investigating
and evaluating possible sonic boom damage to window glass.

Figure 1 - Store front of the commercial building in which an 8' x 10' x 1/4"
window glass was broken coincidentally with occurrence of a sonic
boom. Third large pane from right is the location of broken window.




SYMBOLS FOR COMPUTATION OF SONIC BOOM WAVE PASSAGE TIMES ON A WALL

D
gv

PV

AT

ir

speed of sound ("acoustic velocity"), feet/second

horizontal distance between the vertex of the sonic boom wave and
its ground intersection point, g. (feet)

horizontal distance between a wall point, P, and the vertex of the
sonic boom wave, at the instant P is intersected by the incident
wave. (feet)

height of the wall, feet

length of the wall, feet

coefficient of acoustic velocity variation with altitude,
feet/second-feet

Mach number

projected distance of the wave from the flight path in the YZ
plane; see Figure 3 . (feet)

time variable, seconds
time for a wave to pass a point after the aircraft passes the
coordinate origin. (Subscripts indicate incident or reflected

wave; second subscript indicates the point.) (seconds)

time interval between the passage of the incident and reflected
waves at a point, P, on a wall. (seconds)

flight velocity, feet/second

coordinate axis, horizontal and along the flight track on the
ground.

coordinate axis, horizontal and perpendicular to the flight track.

distance along the Y-axis to the nearest corner of the wall on
the ground.

coordinate axis, vertical.
Mach angle or incident wave angle measured from the horizontal.

angle between the wall and the Y axis, measured clockwise from the
Y axis in the horizontal plane.

time at which a pressure disturbance wave was emitted. (seconds)



) angle between the wall and the horizontal (X,Y) plane.

Subscripts:

c at point ¢, the lower cormer of the wall which is the most
"upstream'" in the flight direction.

d at point d, the origin of the disturbance ray.

g at ground level point g, directly under the point P.

i incident wave.

P at point P on the wall. !

r reflected wave. ¥

t at the tropopause, or at the time a ray passed the tropopause ;
plane.

v at the vertex of the shock cone.

SYMBOLS FOR DIFFRACTION AND REFLECTION OF SONIC BOOM WAVES BY CORNERS AND WALLS
a angle between wall and normal-to-wave
b angle between wall and normal-to-wave
c atmospheric velocity of sound, feet/second %
C1 first disturbance circle 1
C2 second disturbance circle %
C3 third disturbance circle g
C4 fourth disturbance circle %
B height of a wall, feet %
n direction normal to a wall J
P pressure perturbation = i-f; (dimensionless)

) S}

P pressure (psfa)
P° atmospheric pressure (psfa)
P1 pressure behind the incident wave (psfa)




T transformed radial coordinate (see equation 4)

s transformed time coordinate (see equation 4)

S cross—-sectional area of a ray tube, feet2

t time variable, seconds

W transformed complex plane (see equatiom 11)

X coordinate axis along the line of symmetry of a wedge or cormer
Xl coordinate axis along a horizomtal wall

Y coordinate axis perpendicular to X

Yl coordinate axis along a vertical wall

Z complex variable (see equation 10)

A see equation 11

0 angle variable; clockwise from the X-axis

¢ half-angle of a wall or corner; clockwise from X-axis
o] see equation 7

¥ ray angle; clockwise from X-axis

Subscripts:

0 in undisturbed atmosphere
1 behind incident wave

2 behind reflected wave

i incident wave

T reflected wave



COMPUTATION OF SONIC BOOM WAVE PASSAGE TIMES
ON A WALL

The purpose of this section is to develop a method for estimating the pres-
sure-time history at any point on a building due to the passage of a sonic boom
wave. To determine the time of passage of bow and tail waves and their reflec-
tions, the geometric relations between wall and wave must be known for a given
aircraft altitude, direction, and speed. Three methods were attempted, ranging
from a simple, highly idealized model to a more realistic, but complex, analysis.

Method 1

An approximate method was developed to predict the time history of incident
and reflected sonic boom waves on a plane wall. The simplifying assumptions made
here were (a) that the speed of sound of the conical wave is constant and equal
to that at ground level, and (b) that no wind effects are present. The wave then
can be considered to be truly conical if the aircraft is in steady, level flight.

The coordinate axis system for an arbitrarily oriented plane wall is shown
in Figure 2, The bow and tail waves are assumed to have been produced by an air-
craft in steady, level flight at altitude Zv’ flying with a velocity V parallel

to the X-axis. The horizontal distance of the effective vertex of the cone from
a fixed origin "0", at the time the wave passes a given location on the wall, can
be estimated. This distance is designated Xv. For a known geometry and forward

speed of the aircraft, the time history of an incident wave on a plane wall can
then be computed.
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Figure 2 - Coordinate axis system for an arbitrarily oriented plane wall.
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With reference to Figure 3 :

T, = X 1)
1p vly

X, = xp + I)pv (2)

- _ Cot ¢
xp (Yp Y ) Tan 0 + zp Cos b (3)
rd - 2

p N+ &2 )
P Tan B

The four equations can be combined to give the time the incident wave

reaches point P on the wall:
rd - 2

T, = -%— [(Y ~Y) Tan 0 + 2, Cot ¢ \VIT+ (Z,-2) ] (5)
P P Cos 6 Tan 8

The time T, is referenced to the passing of the aircraft over origin, O.

i

The time interval between the incident and reflected waves passing P is
twice the time interval from P to the ground directly beneath:
A'l‘ir = Z(T1 - Ti ) (6)
P g P
X +D
=% gv )
g v
VY2 + z2

= PV
ng Tan B ®

Ty

Thus:

2
ATirp =3 (ng- npv) 9

'rirp = —‘27 Cot a[\/Y§+ zg - VYPZ ,- zp)z] (10)

'1'1 and ATir values for a large number of points, P, on a wall will give a
p P

clear picture of the time-history of the incident and reflected waves for a wall
wvhich is struck by an undisturbed wave. This does not, of course, apply to wall
which would be in the "shadow".

Tir plays an important role in the structural response. From equation

P
(10), it can be seen that this time interval increases with height of the wall
point above ground level and decreases as the offset distance from the flight
track increases.
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(Y -Y )Tan 6
) P ¢
(/;::TZ Cot ¢
— I p Cos ©
0 0 is (+) clockwise from Y axis.
I Y is (+) to left of X axis.
¢ is (+) upwards from the (+X) side.
Y
Py
c
v
l # v~8_ 4
0 -
Z Z
_dY____Eligh.tJ’.a.:h_, v y £ V|
|
8
& .
\ > S
1
Q{2
X
\ ,600" 49,6 Z
\ P 600"
>
IRVAVEP <
Z b
P N b
i l — .
0] ¢ g D X 0 |8 Y
- °p pv Y
D p
gv

Figure 3 - Model for the analysis of a conical wave intersecting
a plane, rectangular, sloping wall.

Method II

A more exact method, based on the ballistic wave analysis of Ref. 1 was
developed. In this, the speed of sound was assumed to decrease linearly with

altitude up to the tropopause (assumed as 36,000 feet), and constant at 972
ft/sec above the tropopause.

=3 - mZ 11
as=ag (11)

For ag = 1116 ft/sec and m = 0.004 ft/sec~ft., the speed of sound is found to be

- . -




very near that of the standard atmosphere; see Figure 4 .
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Figure 4 - Speed of sound vs. altitude.

Flight altitudes below the tropopause. — The shape of the wave fronts pro-
duced by a point disturbance is obtained by finding the system of surfaces which
are orthogonal to rays from that point. By following that disturbance as it
propagates from a point, along a given ray, it is possible to relate the shape
of the wave fronts to the growth of these fronts. In an atmosphere in which the
sonic speed decreases linearly with altitude, the disturbance front coordinates
(x,Y,Z,) are given by:

a

: 2 L2
(x-xd)2 = (Y-Y d)2 + [z—z a7t f (Cosh mt - 1)] = ;} Sinh2mt 12)

The coordinates are as shown in Figure 3 , except that, for a non-constant-
temperature atmosphere, the ray and wave lines are not straight. In equation
{(12), t is the time since the disturbance was initiated. Considering a fixed
coordinate system as shown in Figure 3, the disturbance origin, point d, be-
comes a function of time. Then at time t, the position of the wave front
(X,Y,Z) emitted by the aircraft at an earlier time Tt is given by:

2
a 2 a
(R-X)2 + (1Y )2 + {z-z it [Cosh n(t-1) - 1]} = ¥ SinhZm(t-1) (13)

where: a =a - mZ and X,, Y,, and Z, are functions of T.
v g v d’ d d




The envelope of this system of wave fronts is obtained by eliminating T be-
tween equation (13) and its partial derivative with respect to Z. This differ-
entiation gives:

a
- * \'4
—2{(X-Xd) Xd-2 (Y-Yd) Yd-Z {Z-—Zd + = [Cosh m (t—'r)-l}

N }
{zd+zd [Cosh m (t-1) - 1] +a, Sinh m (t-1)) =
a

=2 -f: Sinh m (t-t) ’:av Cosh m (t-1) + id Sinh m (t—‘r):l (14)

]
<3
L]

[

For steady, level flight: ' d 0 (by coord. system)

d

rdo s
]
o
N
]

4 d constant = ZV

d
Equation (14) then becomes
a
v
(X-Xd) vV + {Z-Zv + - [Cosh m (t-1) - 1]} a, Sinh m (t-1) =
a2
7:’; Sinh m (t-1) Cosh m (t-t)
Simplifying:
a
1 v
X-Xd = - (Z—Zv - ) Sinh m (t-T) (15)

Combining (13) and (15):

a

v a
z-7z_ - —
v m

2
2
Sinh?m (t-t)+Y2 + {z-zv + —; [Cosh m (t-1) - 1]}
al
= Sinh?m (t-t) (16)

1

MZ

-7, - —

1 -{Z-Z - ?1 2 Cosh?m (t-1) - 1|+ Y2 +
M2 \ d m d m

2a a?
-—% (Z-Zd - ig ) Cosh m (t-t) + -%2 [Coshzm(t-—'t) - Sinhzm(t—'r)] =0 (16a)
m

\ -
-V

=1

1 av 2 9 2av av
v (Z—Zv- o ) Cosh?m (t-t) + o (Z-Zv- r_n—) Cosh m (t-1) +

2 ay .2 1 a\zr
AR SRS S Ak (165)
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T —

By the quadratic formula:
M2a a =1 4a2 a

v v v v .2 4 3 2
Cosh m(t-t) = - - (Z-Zv- m_i + - (Z-ZV o ) - v (Z--'Zv - ;—)
3 2 1 G l% T, a, 2|-1
[YZ+(Z—Zv-m—) (l—if)-i-;f -MT(Z-ZV—;-)
Simplifying: M2a / 2
2 a o9 a
Cosh m(t-1) = - — Y ¢ +V1- L) [Y2+(Z-Z -B%a-1) + v]
n(zz, - v - (a,,H vV om M2’ T m?
m
[ Ma_ _ [ Ma_ a_ 2|
thMhﬂtZ;;aanviWP%ﬁ%;% -uav-qu-ﬂf(n)
m

For Z<Zd, the (+) sign applies before the radical in (17).
For given values of Y = Yp, Z= Zp, Zv, and M, values of (t—t)p can be cal-
culated by (17). The time-history of an incident wave is then given by:

1
T, =3 X +Dpv)

P
P 1 Z Cot ¢] (X -X,)
=9 (YP-YC) Tan 0 + _;Cos n + (t-‘r)p - -—L—-v (18)

Equation (15) will give (xp-xd) for the selected Zd’ with (t-1)p from (17).

For the time interval between incident and reflected waves,
2

For this linearly-varying speed of sound atmosphere,

Dpv = (t—r)p vV - (Xp—Xd) and ng = (t-‘t)g v - (Xg—ng) (19) & (20)

The (Xg-ng) term can be obtained from (15); one can solve (17) for (t—T)g with

Y=Y =Y and Z=2 = 0.
g P g

Flight altitude above the tropopause. — An explicit solution is not pos-
sible for a given offset distance from the flight track. A method will be pro-
posed, however, which will permit the computation of local positions and times
of the wave.

For Zv >2Z 3_Zt, where Zt is the altitude of the tropopause (here assumed

as 36,000 feet), the speed of sound will be assumed to be constant. The dis-
turbance envelope at time t for a point disturbance emitted by the aircraft at
time T is a cone:

(x-xd)2 + (Y-Yd)2 + (z-zd)2 = ag (t-1)2 (21)

11




Differentiating (21) with respect to Z and recognizing that:

Yd = ( Yd =0 ad =0 a; = a,
7 =7 ; = 0 3.( =V
d v d d
then
X=X, = av(t-'r) . (22)
M

From equations (21) and (22):

Y2 + (z-zv)2 = av2 (t-1)2 (1-1/M2) (23)
?Y _ S
3Z = constant ———Z - Z

ray v

At the tropopause, Y = Yt and Z = Zt = 36,000 ft.

2 2 V2 = o 2 N2 (1-1/M2
Yt + (zt zv) a, (tt )¢ (1-1/M%) (24)
Y
oY - t
92 Tz -2 (25)
t v
ray

For Zt >Z >0, the cone is "warped" by the temperature gradients and no

exact analysis is available. For local wave positions and times, however, it is
sufficient to consider only the ray which reaches the given point. If the ray
at the tropopause plane is considered to be a point disturbance, the previously
developed equations will describe its path. Then the location of the wave can
be found as a function of time, working point-by-point with a ray-tracing pro-
cedure.

The equation for the disturbance envelope at time t of a point disturbance

emitted at time tt’ at the tropopause plane, is:

com ateyre) = T WVl B[ Lz, 2] -r, vt
m

Equation (26) can be solved as before, except that now the value of Yt is

not known. An iterative method must be used:

1. Assume a value of Yt'
2. Calculate t, and 3Y at the tropopause by (24) and (25).

3Z
ray

12




3. Assume that the slope will be constant for a selected AZ interval.

oY
Y-Y, =3, A2 27)

z =z-82 (28)
4. Calculate (t-tt) using (26), and the techniques explained in the previ-

ous section. Calculate the new wave-slope as follows:

From equation (16), 9Y can be evaluated for the disturbance envelope which
9Z
is everywhere perpendicular to the rays. Then differentiating (16) with respect

to Z for a point disturbance at Xt, Yt’ Zt:
2 3 3 3¢ Cosh m(t-1)= 0 (29)
222~ D) Sinh?m(t-1)+ 2(Y-Y Q| + 202z -+ 2
9Z'dist.
envel.
Since 3Y} Y = -1
dist. ray
envel.
a a -1
_:% = (Y-Yt){(z—zt— —i){l+ i&% Sinh? m(t- t)] + —:-‘ Cosh m(t- 1) } . (30)
ray

5. Repeat steps 3 and 4 until the desired Z value is obtained. If the com-
puted Y does not give the desired location Y _, select a new Yt and repeat the
five steps. P

6. When the location has been obtained to sufficient accuracy, the Ti
value is computed by (18) except now: P

(t-r)p = (tt- r)p + (t—tt)p

Find (tt- ‘)p from (24) with the proper Yt.
Find (t -tt)p from (26).
(xp-xd)- (xp-xt) + (xt—xd)

and t, .

Find (xp—xt) from (15) with xt, Zt, ¢

a
v

7. For the g location, steps 1 through 5 must be performed again, with all
p subscripts replaced by g. ng can now be found with (t- -r)g and (Xg—ng) as

was done for p in Step 6.

8. Compute AT by (9).

ir
P

Using an IBM 1620 computer and 500 ft. intervals for AZ, about 70 seconds
was required for each complete iteration for a 50,000 foot altitude.

13



Method III

A third method was developed which attempted to reduce the computer time
required by Method II without sacrificing too much accuracy. The simplifying
assumption added was that 3Y of the ray was constant at the value of the flight

9Z

altitude, while the linear variation of speed of sound with altitude below the
i pv' Vv (31

tropopause was retained. S
P
ds
xp + f Tan B
P 0

1 1

T (Xp+D v
S is the projected distance of the wave from the flight path in the YZ plane;
see Figure 3.

Flight altitudes below the tropopause. -

-\/ 2
dS = (dY2 + dz2) = - gz 1+(dY) (32)

Assuming:

ay Y-Y

al = constant = -Z——z— , and Yv is zero by the coordinate system,

ray
Y 2

dS = - dZ \/1 + ( Z-Zv ) (33)
For the linear sonic speed variation: a = ag - mZ

da = - mdz orZ=—i—a- (34)

a
VMz-l V v2-a2

From equations (32) through (35), the time interval -from aircraft overhead pas-
sage until wave passage at point P can be calculated:

Y 2 a A j2_,2
T ,_1_x+‘\/1+(_p__) P V. vi-a®
i Vi'p ZP-Zv ma
a

Tan B = (35)

1 Z Cot ¢
T ="-(Y-Y)'I.'ane-!-‘-}?———
i v Cos © [
P 1 v_—__L zl?\/Z 2 2_,2 v vz-a‘zl iE :I
+= \1+ (—) Vé-at = "Vé-al 4+ V In| ————— )(36)
mV ZP ZV P v v +\/v2._ ; a
2
ATh_p v @gy= D) 9
Where: 1- / ZB. 2 _\/ 3 \/ PE) vV + Vz—a‘zr i&
D == 1+ (O V2-32 -V v2-32 +y In | ————— ) 37)
gv m z, g v v+ Vv2-a2 a (
g v

14




c e —

sy
pv m

Y 2 vV + v2-32 a 1
—P-—) v2-a§ - sz-a‘z, + Vin A ;"- _‘ (38)
v

Zp_'zv v+ v2 -ag

From (36), (37), and (38), Ti and ATir can be computed.
P p

Flight altitudes above the tropopause. -

1 1 [ St as Sp _ds
Ti v Lx +j TanBJ v l-xp +t! Tan 8 7| Tan B (39)
S
1+ 2 Ak _\/1+ e )2
Tan B Tan B Z-Z Tan 8 Z -Z
v t t v
zZ -Z ~ Y 2
= vt 2_.2 ‘\/ -t
3 v ag 1+ 7 -7 ) (40)
v v
By assumption: Yt Yp
-Z Z -Z
P
SP
Y \v2-a2
45 _ 1 _p |2 W22 7.2 VHVV )
Tan g~z Vit 7% V2-a -'\/V-av+V1n—-——— (41)
S p Vv P v +\/v2-a2 ,
t (as in equation (36) P
Then (39) becomes:
Y
N U P Cot 9| 1 _p_|? 70 -
Tip v [(Yp Y ) Tan 6 + zp Cos e] +y 1+ zp_zv M2-1 (2 -Z,) +

1 v v +\/ V232 a
—-f\/vz-az -V v2-a2)~ L1 Y. P (42)
m P v|i m a

1\ vie? ooz ¥ v_ _g
va ag '\/V av}+m1n 7 (43)

15



These values can be used to obtain the incident-to-reflected time interval:

ATir = 2 (Ti - Ti )
g P
Method III is much more straightforward to compute than Method II, but the
assumption of constant ray angle places its accuracy in doubt. Therefore, a

number of typical cases were computed by the three methods to provide a compar-
ison of the results.

Computed results by the three methods. - To compare the three methods, com-
putations were performed for a position on a vertical wall 100 feet above ground
level. The ground level was taken as being at sea level, and flight altitudes
of 70,000, 36,000, and 20,000 feet were used. For flight Mach numbers of 1.5,
2.0, and 3.0 and offset distances, Yp from 0 to 70,000 feet, the three methods

gave values of incident wave arrival time, Ti*’ and time interval between
incident and reflected waves, A'I‘ir . Figures 5 , 6 , and 7 show Ti and
Figures 8 , 9 , and 10 show ATir .p °
For small offset distances,pthe three methods give almost identical results.
The differences are greatest at low Mach numbers and large Yp values. Method I,

the conical wave analysis, gives the poorest accuracy, if it is assumed that
Method II is the most exact of the three. Method III, which is considerably
easier to calculate, appears to be nearly equivalent to Method II, and is the
one recommended for use.

It should be emphasized that no accounting for wind has been taken, and
that a linear variation of acoustic velocity with altitude was assumed.

Converting wave time-histories into wave geometry. - For the Kinney Shoe
Store, the predicted position of the wave relative to the building was needed,
as well as the time-of-passage of the waves at specific locations. The geometry
can be found from the time values as described below.

To determine the angle between wave and wall in a horizontal plane, compute
the Ti values for two points on the wall in the same horizontal plane, as for

example, the lower corners of a building. If the distance between these points
is L, and the point having the smaller Y coordinate is point 1 and the larger
is point 2, the XY plane is shown in the following sketch.

For these curves, the time reference for T is the time the wave passes the

i
coordinate origin. P

16




v, Yl ,,—V(Tiz-mil)

\ e
Wave —=\
\ 8 = wall angle

8 = wave angle
W
\ \Z/
6 1

)
& X

It can be shown, by use of the law of sines, that the wave angle is

v
Tan ew = Tan 6 - (Sec ©) 1 ('1‘]._2 - Til)

Similarly, two points can be chosen on a vertical line, such as the upper
and lower points of the corner of a building, with the upper designated 3 and
the lower 4. Then, a vertical plane perpendicular to the wave line found above
(i.e., at an angle Bw + 90° from the Y axis) is as shown.

Then, for a wall height H, §z
1 a
Stn ¢, ~ Sin ¢, =g (g, ~ Ty, )

These relations were applied to the Kinney Shoe Store conditioms. For this,
the geometry is shown in Figure 11, and L= 70 ft., H= 12.75 ft. Values of
(T12 --Til ) and (Tiu -Ti3 ) were found to be 0.0031 and 0.0014 seconds, respect-

ively. From this, ew is found to be 26.8°, making the angle between wall and
wave (e-ew) = 3,2°, The wave elevation angle is ¢, = 70.1°. The resulting wave-
building relationship is shown in Figure 12 and some wave-time positions are
depicted in Figure 13.

From test data for the F-101 aircraft at the flight Mach number, altitude,
and the Y distance, the bow-to-tail wave time interval was estimated to be
0.135 seconds. Upon computing the incident-to-reflected wave time interval,
ATir,for 6.0 and 12.75 feet heights, the pressure histories shown in Figure 14

could be predicted.
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Time interval between bow and
tail waves = 0.135 sec.

ATir = 0.0078 sggﬂ Apo = overpressure = 1.65 psf
bow reflected wave

Apo bow incident
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Figure 14 - Sonic boom pressure histories on the Kinney Shoe Store west wall.
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DIFFRACTION AND REFLECTION OF SONIC BOOM WAVES
BY CORNERS AND WALLS

The preceeding section presented a method for predicting the wave histories
of walls which were hit directly by a sonic boom wave. For walls which are in
the "shadow" or which receive the reflected effects of nearby walls or corners,
a further development is required. 1In particular, the broken window in the
Kinney Shoe Store was both in the shadow region and beneath an overhanging
canopy. In the time interval between bow and tail shock, there was sufficient
time for nearly twenty wave reflections between the ground and the overhanging
roof. It is obviously hopeless to attempt to predict the pressure history on
the window without reliance on a computer programmed to include both wave input
and proper boundary conditions. Such a technique will be outlined below.

Sonic booms are considered to act as acoustic waves, or plane weak pulses,
since they are very weak shock waves. In Reference 2 , the diffraction and re-
flection of an incident plane pulse by wedges and corners has been treated and
explicit, closed-form expressions have been obtained in terms of elementary
functions. For this geometry the solution is "conical" and independent of
"radial" distance in the XYt space. This allows separation into appropriate
coordinates, as in Busemann's conical flow method widely used in supersonic
aerodynamics. The propagation of plane discontinuities has been investigated by
Luneberg, Reference 3 , in electromagnetic theory, and by Keller, Reference 4,
in acoustics. It is found that in both cases the discontinuity surface satisifes
a first order differential equation, the eiconal equation, in a homogeneous
media, and that the magnitude of the discontinuity varies in a simple manner.
Making use of these results, in Reference 2 , the initial-boundary value problem
has been converted into a characteristic-boundary value problem in XYt space
and then the conical flow method has been used to obtain the solution.

A solution is sought to the acoustic wave equation in a two-dimensional
geometry.

Wave

1
P, T2 P (D

in the region ¢ < 6 < 27-¢

where 8 is the polar angle,

6 = arcTan Y/X. | Figure 15 - Incident wave on a wedge.

By definition, the half-planes at 6 = + ¢ form a wedge or cormer, depending
on whether ¢ is less or greater tham 90°. '
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The solution to be considered will have jump discontinuities on certain
moving surfaces representing the shock wave, say r(X,Y) = ct. We require that r
satisfy the eiconal equation. ) )

or ar
Gt Gy =1 (2)
This implies that the surface can be constructed by Huygen's principle, that it
moves with velocity ¢ along its normal, and that it is reflected from the wall
in accordance to the simple reflection law. A further assumption is that the
reflected discontinuity value is twice the incident, following the rigid wall
assumption 3p = 0.
an

The orthogonal trajectories of a family of discontinuity surfaces S(t) are
straight lines called rays. The set of rays through a small closed curve on a
discontinuity surface S(to) is called a "tube'". Denote the area of the tube at

S(to) by dSo and the area of the tube at S(t) by dS. Also, the pressure discon=-
tinuities at S(to) and S(t) are P, and p, respectively. Then, for plane geome-

try, the magnitudes of the discontinuities must vary inversely as v dS:
1
9_3.)’_‘_’2
Lim(dso =3 (3)

ds->0
Equation (3) permits p to be computed from P, On the same ray, once the discon-

tinuity surfaces are known.

Referring to Figure 15, the ray direction is normal to the discontinuity
plane and is positive in the direction of motion. The angle between the ray
direction and the X axis is ¢, and it is always positive.

It follows from (2) that a plane discontinuity surface moves parallel to
itself with velocity ¢ along its normal and from (3) that a pressure jump, p=1,
across the wave front does not change. This situation continues until the wave
reaches the wedge. Then reflected and diffracted discontinuity surfaces may
originate. These surfaces can be obtained from the configuration at the instant
of contact. Then the incident plane progresses parallel to itself, and one
(for ¥ > ¢) or two (for y < ¢) reflected plane discontinuity surfaces plus a
circular cylindrical surface with the wedge as its axis are produced: See
Figures 16 and 17 .

The pressure jump across the original plane is unchanged and the jump across
the reflected plane wave is equal to that of the incident, making p=2. The
pressure jump across the cylindrical wave is zero, however, since all rays
reaching it come from the axis where dSo = 0, Thus, p is not discontinuous

across the cylinder. The value of p everywhere outside the cylinder is known

(either 0, 1, or 2). Since 9p = 0 on the wedge and p is continuous across the
an

circular arc, the values on the boundary are known. From these values it is

possible to determine the p values within the cylinder.
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The wave patterns are self-similar with respect to time, and so can be
presented in X/ct and Y/ct coordinates, as in Figures 16 and 17 . Solutioms
are to be sought inside the circle along radial lines from the origin. A set

of special polar coordinates in XYt space will be used for this solution, which
follows the method of Keller and Blank; Reference 2.

[cztz -(x2 + YZ)] %

s = ct/r (4)

r

Tan—lYI X

@
]

The boundary of the circle is given by r = 0 and s = =, and equation (1) becomes

(rzpr)r + [(l-sz)ps] s + T}_-sz Pgg = 0 (5)

Incident
wave

Reflected
wave

T

X
ct
Figure 16 - Diagram of a plane wave intersecting a wedge;

One reflected wave.(y > ¢)
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Figure 17 - Diagram of a plane wave intersecting a wedge;
Two reflected waves.(¥ < ¢)

In accordance with the assumption of similarity, p = p(s, 0).
Then (5) becomes:

—s2 1 =
[“ s5) PSL*“I.—J Pgg = O

If we set y o1 )%
L e |

then (6) becomes LaPlace's equgtiou:
9 (, 3B 3%p _
P 3 (o ap)+—§39 0

30

ct

X

(6)

¥))
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The solution to (8) may be written in the form

p = Im £(2) (9)

where f(Z) is an analytic function of the complex variable Z = peie.

Introducing R = (X2 + Yz)%, we have from (4) and (7)

(10)

The cone R < ct is thus mapped into the unit circle p < 1. The problem has been
reduced to that of finding the function analytic in an appropriate sector of the
unit circle with prescribed imaginary part on the boundary.

The values of p on the boundary of the circle in Figure 16, for y<¢, are:
p=0onp =1,¢<08<¢+a

lonp =1, ¢+ a<6<21r~-¢-b
2,2n - ¢ ~b <86 <27 - ¢

o
]

P=2o0np

%%-= Oon0O<p<l, 6=¢ and 6 = 27 - ¢
For Figure 17, where ¢ < ¢, the boundary values are:
=2onp =1,¢<06<¢+a

lonp =1, ¢ +a<6<2n-¢-b

2onp =1,2r - ¢ -b <8 <21 -4

gk? o ™ v
i

Oon0O<p<1l, 6=¢and 8=2m ~ ¢

In order to solve for p, the exterior of the wedge will be mapped from the
Z plane onto the upper half of the W plane by the transformation

A
W= pleiw = (Ze-1¢) (11)
v
where A 2(n <)
Thus, p =p®, W= A (8=¢) = A (0-7) + L . (12)

The circular sector in which p is to be determined becomes a semicircle in
the W-plane with 3p = 0 on the diameter (into which the sides of the wedge
26
transform). By the reflection principle we may extend p into the whole plane,
and obtain a boundary value problem in the unit circle; See Figures 18 and 19.

The next step is the determination of a harmonic function p with piecewise
constant boundary values. The solution of the problem may be obtained as the
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sum of solutions each of which takes on a specified constant value on one arc of
the circle and is zero on all other arcs. Suppose Wy> Wy with W,-W; <2m,

and p = ¢ on the arc W,>W>W;, and p = 0 elsewhere. Then p can be shown to take

the form (Reference 2):

{W—exp ( iwz)} Wo-W)
arg (13a)

410

P = W-exp (iW;) T2

ila
p=20

p=0
-ila

Figure 18 - Complex plane wedge/shock representation.(y > ¢)

p =1
ei(n—kb)
ila p=2
p=2 9p _
30 0
p =2 p =2
-ila
e-i(w—Ab)
p=1

Figure 19 - Complex plane wedge/shock representation.(y < ¢)

32



And in terms of real variables:

W,-W
. (1-0,2) sial 21|
P= ;-arcTan wz'w1 W _wl (13b)
(1+p12)Cos(—2—-)- 201Cos W - 5=

The arctangent is taken in the interval between O and w. The solutions may then
be written explicitly as follows:

Case 1, ¢ < ¢ < dw - ¢

p=1- l-arcTan!. -(l-pfi) Cos A (y-m) ]
v L (1+p2)) Sin A (q;-n)-zp" Sin) (e-n).‘
+ 1 arcTan [-(1-—;;2)‘) Cos A (ytm) ]
" (1+p2%) Sin A (p+1) =201 SinA (8-m) (14)
Case 2, 0 < ¢y < ¢
p=1+ L arcTan [ (1-92A) Cos) (¢-w) }
" (1+p2") sinA (y-1) -20A SinA (6-m)
+1 arcTan r-(l—pzk) Cosi (y-m) ]
v (1+02") sinA (y-1) -2pX SinA (8-m) (15)

Application to sonic boom incident to a building. - Using equation (14) or
(15), one can compute the pressure distribution in a circular arc of radius ct
surrounding a corner of a structure struck by a sonic boom wave. The circle
defines the region in which the wave is diffracted and reflected due to the
presence of the corner. Let:

t = time elapsed since the wave hit the corner of the structure.

H = height of the structure.

Then, if ct>H, the circular sector has reached the ground and has been reflected;
the previous formulae cannot be applied directly. Sonic boom waves are always
associated with incident bow and tail waves with an expansion region between
them (the "N" wave). 1In addition, both bow and tail waves have ground-reflected
waves. The pressure distribution of a sonic boom can be computed as the alge-
braic sum of the pressure distributions of each of these elements: bow wave
(incident and reflected), expansion wave region, and tail wave (incident and re-
flected) . In Figures 20 through23, a few multiple reflected disturbance regions
of a sonic boom wave past a right angled corner are shown. For this case, y=0,
¢ = %n. So equation (15) is to be used to compute the pressure distribution of
a diffracted incident wave at point (Xj1,Y;) in the neighborhood of the corner.

Pressure distribution at any time is a function of the height of the point above
ground level and the geometry of the reflected disturbance regions.

2 2
In the interval 0 < ct iA/XI + Y, , p(X;,Y;) =0, 1, or 2; the value

depends on the wave location at the time.
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In the interval X% + Y% <ct 3}/x{ + (ZH-YI)2 » (Figure 20), p(xl,Yl)

can be computed from the equation for disturbance C1 only. Thus, P1» the pres-

sure disturbance at p due to Cl’ is computed using

0 = arcTan (YI/XI) - ¢, and R = \/X% + Y% and p = Py~

In the interval\/xf + (2B-Y )%< ct <2H +\/x% + Y2, (see Figure 21),
p(XI’Yl) can be computed by treating the point as affected by C1 and its ground

reflected disturbance C2. C2 is treated as a mirror image of Clz

pr(xl’Yl) is the pressure at the boundary of the region C2’ which may be

Ground Level 1

Figure 20 - Wave reflection by a building; Phase I

N\ /x2 2 2 -
X+ 3 < et <T\/x2 + (28-Y))

‘——m———-

Ground Level

vy,

Figure 21 - Wave reflection by a building; Phase II
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ZH-Y1
with 0 = arcTan ( X ) - ¢.
1

calculated as the boundary pressure of C

Then,

1

where:
for P> R=V X% + Y% and 6 = arcTan(Yllxl) - ¢
2B—Y1
for Pys R =W)2 and 6 = arcTan ( X Y-¢
1
2H-Y
for Pp, R = ct and & = arcTan (—x——) - ¢
1

In the interval X% + Y% + 2H < ct < 2H + \/xi + (2H - Yl)2 (see Figure 22),

p(Xl,YI) is affected by the regions of CI’CZ’ and C3. An exact method would be
to compute the boundary values on C3, assuming that it is affected by regions
C, and C, for n/4 < ¢ < 58/4 and C1 only for 5v/4 < ¢ < 7n/4, and then find an

1 2
exact solution for the pressure at XI,Y1 consistent with these boundary

Y X Ground Level l

| AS1

Figure 22 - Wave reflection by a building; Phase III.
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conditions. This method is very difficult, if indeed possible, because it re-
quires satisfying variable boundary conditions involving complex expressions.

It is therefore suggested that an easier, and perhaps fairly accurate, method is
to assume that the influence of region C3 on the point is due to a peak normal

shock of strength equal to the difference of P,y (0,ct-2H) and pZ(O,Vx% + Y%)
at ¢ = 5n/4. Then p(Xl,Yl) is the sum of the pressures due to C ’CZ’ and C

3:
P(X),Y)) = py(X;,Y)) + Py (XY = Py (Xy,Y)) + pz(O,"\/X%+Y%) ~ p,(0,ct-2H)

for p,, R =\/x%+Y§ and 6 = arcTan(Yllxl) -6

where

2H~Y

=\/X2+(20-Y.)2 - Ly -
for p,, R x1+(2H Yl) and 6 = arcTan ( X ) - ¢
2H-Y1
for Py R = ct and 6 = arcTan ( _EI_ ) - ¢

A\ [ x24y2 1\ /x2 2
2H +T\[XJHYS < et < 2H + \/X{+ (2H-Y))

ct-2H

Ground Level

1

Figure 23 - Wave reflection by a building; Phase IV
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for pz(o;\/x%+Y§ ), R=2H + %+Y% and 6 = 7

for pz(O,ct-ZH), R=ct and 6 = 1

In the interval\/x% + (2H-Y1)2+ 2H < ct < 4H +\/X% + Y% (see Figure 23),

p(Xl,Yl) is computed as affected by regions Cl’CZ’CB’ and C4, with the first
three treated as in the previous example. For Py» C4 can be considered as the

ground reflection of C3.

By use of a digital computer, this process can be extended tc large numbers
of reflections and the pressure distributions predicted as functions of time for
given wall geometrics and wave incidence angles. Note however, this development
applies to two-dimensional cases only, so that the wave must be parallel to the
edges of the walls.

Figure 24 depicts the window on the north wall of the Kinney Shoe Store,
under the roof overhang, that was broken during the seventh flight of a F-101
aircraft on May 17, 1964. The sonic boom wave for the particular conditions is
shown as determined in the previous analysis. For the two—dimensional analysis
to consider the corner effects, the wave was assumed parallel to the west wall,
neglecting the 3.2° that was estimated in the previous analysis. As shown in
Figures 24 to 26, the incident and reflected waves (considering only the bow as
a step input at present) are diffracted by the roof overhang and reflected by
the ground and roof overhang. The sonic boom wave is considered as a two-dimen-
sional wave and the effects of the north edge of the roof overhang and south-
extending west wall are neglected. The wave-history for the window and for some
of the points on the north-west corner were estimated using the analysis
developed above, considering the effects of the reflected disturbance regions on

the rigid walls (the ground and the roof overhang). The Xl and Y1 axes were se-

lected as shown in Figure 24. For this particular geometry, ¢ = 0 and ¢ = 19.9°,
Substituting these values in equation (14),

L 1

T 2m-2¢ - 2

A

[

- (1-p) Cos %(w;n)
L (1+p) Sin %(¢-%) - 2p? Sin L(9-m) 4

r :

- (1-p) Cos %(w;ﬂ)
L(1+p) Sin %(y+w) - 2p 2 Sin %(6-w) (16)

p=1- ;-arcTan

+ l-arcTan
) §

Simplifying equation (16),

p=1- %-arcTan

[ (1-p) Sin y/2 ]
L(1+p) Cos p/2 - Zp;é Cos 0/2

+ %-arcTan

(1-p) Sin ¢/2
1 } (17)
. (14+p) Cos ¢/2 + 2p° Cos 0/2
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A computer method was developed for the wave history at any point X1 Y1 in the

coordinate system shown in Figures 24 - 26, The time t = 0 corresponds to the
condition at which the incident wave of the sonic boom has reached the origin of
the chosen coordinate axes (west edge of the roof overhang). The pressure dis-
tribution due to the subject sonic boom was computed at various points on the
north wall of the Kinney Shoe Store as in sketch below.

Broken window Roof overhang

\\
EA A P
F o] t
West‘-—‘ 0_‘— 24 5'_—-— E 4' H = 12-75
B D
3.6' Ground level
T7 7777 7777777777 77777 777 777777777777 777777
Sl 5!

North wall of the Kinney Shoe Store
(view from interior)

In Figure 27, the pressure distribution at points A through F are plotted
for a step input wave (pi = 0.5, p.= 0.5).

A sonic boom ordinarily will have the shape of an N-wave. The time inter-
val, At, between the bow and tail waves of the sonic boom that caused the broken
window has been estimated from related test data to be 0.135 seconds. An N-wave
can be treated as two strong shocks of equal strength (pi =p, = LA po) and a

series of weak expansion waves between them. An N-wave of strength p; = 0.5 and
P, = 0.5 at bow and tail waves separated by 0.135 seconds was assumed. Then 135
small expansion waves were assumed of strength P, = ~-1.0/135 = P> each separated

by a time interval of 0.001 seconds. A computer program was written and the
pressure at any time ti determined from the sum of the pressures due to all the

step waves, effective at that time.

About 15 minutes were required to obtain the pressure history of each point
from ti = 0 to ti = 0.16 seconds on an IBM 7040 computer. 1In Figure 28, the

pressure histories of the points A through F are plotted. The dotted lines rep-
resent the input wave if there were no corner or overhang effects.
Since the data indicates that Apo for the subject flight was about 1.65 psf,

multiplication of the points on Figure 28 by 1.65 will give the estimated pres-
sure history on the window exterior.
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CONCLUDING REMARKS

The three methods presented for calculating the time-of-passage of an inci-
dent wave and the time interval between incident and reflected waves for a wall
facing the wave give almost identical results for small offset distances (10,000
feet or less) from the flight track. The differences in results are greatest at
low Mach numbers and large offset distances (up to 70,000 feet). The conical
wave analysis (Method I) gives the poorest accuracy. The method (Method III)
which assumes an atmosphere with a linear variation of acoustic velocity with
altitude up to the tropopause and which uses the simplifying assumption of
constant ray angle projection in the vertical plane normal to the flight path is
considered to be the most practical method.

The method presented and computer method developed for determining the
pressure-time histories at the four corner points and mid-point position of the
broken window location under the roof overhang of the wall in the "shadow" pro-
duced no indication of any abnormal or unusual shock wave acting on this window
area. However, the fact that this window did apparently break as a result of
the particular flight considered suggests the need for continuing study and
investigation in this area.

It is concluded that development of confidence in these or other analytical
methods and the determination of the validity of various assumptions as to both
atmospheric conditions and flight data values will require specific field tests
designed and conducted for this purpose.

Andrews Associates, Inc.
1330 Classen Building
Oklahoma City, Oklahoma, June 20, 1966
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